3.1205 \(\int \cos ^2(c+d x) \cot ^3(c+d x) (a+b \sin (c+d x)) \, dx\)

Optimal. Leaf size=86 \[ \frac{a \sin ^2(c+d x)}{2 d}-\frac{a \csc ^2(c+d x)}{2 d}-\frac{2 a \log (\sin (c+d x))}{d}+\frac{b \sin ^3(c+d x)}{3 d}-\frac{2 b \sin (c+d x)}{d}-\frac{b \csc (c+d x)}{d} \]

[Out]

-((b*Csc[c + d*x])/d) - (a*Csc[c + d*x]^2)/(2*d) - (2*a*Log[Sin[c + d*x]])/d - (2*b*Sin[c + d*x])/d + (a*Sin[c
 + d*x]^2)/(2*d) + (b*Sin[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0917852, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2837, 12, 766} \[ \frac{a \sin ^2(c+d x)}{2 d}-\frac{a \csc ^2(c+d x)}{2 d}-\frac{2 a \log (\sin (c+d x))}{d}+\frac{b \sin ^3(c+d x)}{3 d}-\frac{2 b \sin (c+d x)}{d}-\frac{b \csc (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*Cot[c + d*x]^3*(a + b*Sin[c + d*x]),x]

[Out]

-((b*Csc[c + d*x])/d) - (a*Csc[c + d*x]^2)/(2*d) - (2*a*Log[Sin[c + d*x]])/d - (2*b*Sin[c + d*x])/d + (a*Sin[c
 + d*x]^2)/(2*d) + (b*Sin[c + d*x]^3)/(3*d)

Rule 2837

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 766

Int[((e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(e*x
)^m*(f + g*x)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, m}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) \cot ^3(c+d x) (a+b \sin (c+d x)) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{b^3 (a+x) \left (b^2-x^2\right )^2}{x^3} \, dx,x,b \sin (c+d x)\right )}{b^5 d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(a+x) \left (b^2-x^2\right )^2}{x^3} \, dx,x,b \sin (c+d x)\right )}{b^2 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-2 b^2+\frac{a b^4}{x^3}+\frac{b^4}{x^2}-\frac{2 a b^2}{x}+a x+x^2\right ) \, dx,x,b \sin (c+d x)\right )}{b^2 d}\\ &=-\frac{b \csc (c+d x)}{d}-\frac{a \csc ^2(c+d x)}{2 d}-\frac{2 a \log (\sin (c+d x))}{d}-\frac{2 b \sin (c+d x)}{d}+\frac{a \sin ^2(c+d x)}{2 d}+\frac{b \sin ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.195719, size = 77, normalized size = 0.9 \[ -\frac{a \left (-\sin ^2(c+d x)+\csc ^2(c+d x)+4 \log (\sin (c+d x))\right )}{2 d}+\frac{b \sin ^3(c+d x)}{3 d}-\frac{2 b \sin (c+d x)}{d}-\frac{b \csc (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^3*(a + b*Sin[c + d*x]),x]

[Out]

-((b*Csc[c + d*x])/d) - (2*b*Sin[c + d*x])/d + (b*Sin[c + d*x]^3)/(3*d) - (a*(Csc[c + d*x]^2 + 4*Log[Sin[c + d
*x]] - Sin[c + d*x]^2))/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 139, normalized size = 1.6 \begin{align*} -{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{2\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{2\,d}}-{\frac{a \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{d}}-2\,{\frac{a\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{b \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{d\sin \left ( dx+c \right ) }}-{\frac{8\,b\sin \left ( dx+c \right ) }{3\,d}}-{\frac{\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}b}{d}}-{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) b}{3\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^5*csc(d*x+c)^3*(a+b*sin(d*x+c)),x)

[Out]

-1/2/d*a/sin(d*x+c)^2*cos(d*x+c)^6-1/2*a*cos(d*x+c)^4/d-a*cos(d*x+c)^2/d-2*a*ln(sin(d*x+c))/d-1/d*b/sin(d*x+c)
*cos(d*x+c)^6-8/3*b*sin(d*x+c)/d-1/d*cos(d*x+c)^4*sin(d*x+c)*b-4/3/d*b*sin(d*x+c)*cos(d*x+c)^2

________________________________________________________________________________________

Maxima [A]  time = 0.978325, size = 92, normalized size = 1.07 \begin{align*} \frac{2 \, b \sin \left (d x + c\right )^{3} + 3 \, a \sin \left (d x + c\right )^{2} - 12 \, a \log \left (\sin \left (d x + c\right )\right ) - 12 \, b \sin \left (d x + c\right ) - \frac{3 \,{\left (2 \, b \sin \left (d x + c\right ) + a\right )}}{\sin \left (d x + c\right )^{2}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(2*b*sin(d*x + c)^3 + 3*a*sin(d*x + c)^2 - 12*a*log(sin(d*x + c)) - 12*b*sin(d*x + c) - 3*(2*b*sin(d*x + c
) + a)/sin(d*x + c)^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.72722, size = 258, normalized size = 3. \begin{align*} -\frac{6 \, a \cos \left (d x + c\right )^{4} - 9 \, a \cos \left (d x + c\right )^{2} + 24 \,{\left (a \cos \left (d x + c\right )^{2} - a\right )} \log \left (\frac{1}{2} \, \sin \left (d x + c\right )\right ) + 4 \,{\left (b \cos \left (d x + c\right )^{4} + 4 \, b \cos \left (d x + c\right )^{2} - 8 \, b\right )} \sin \left (d x + c\right ) - 3 \, a}{12 \,{\left (d \cos \left (d x + c\right )^{2} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(6*a*cos(d*x + c)^4 - 9*a*cos(d*x + c)^2 + 24*(a*cos(d*x + c)^2 - a)*log(1/2*sin(d*x + c)) + 4*(b*cos(d*
x + c)^4 + 4*b*cos(d*x + c)^2 - 8*b)*sin(d*x + c) - 3*a)/(d*cos(d*x + c)^2 - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**3*(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2354, size = 111, normalized size = 1.29 \begin{align*} \frac{2 \, b \sin \left (d x + c\right )^{3} + 3 \, a \sin \left (d x + c\right )^{2} - 12 \, a \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - 12 \, b \sin \left (d x + c\right ) + \frac{3 \,{\left (6 \, a \sin \left (d x + c\right )^{2} - 2 \, b \sin \left (d x + c\right ) - a\right )}}{\sin \left (d x + c\right )^{2}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^3*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(2*b*sin(d*x + c)^3 + 3*a*sin(d*x + c)^2 - 12*a*log(abs(sin(d*x + c))) - 12*b*sin(d*x + c) + 3*(6*a*sin(d*
x + c)^2 - 2*b*sin(d*x + c) - a)/sin(d*x + c)^2)/d